Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA.
نویسندگان
چکیده
We find that immediately following transcript initiation, RNA polymerase II pauses at several locations even in the presence of relatively high (200 microM) levels of nucleoside triphosphates. Strong pauses with half-lives of >30 s were observed at +7, +18/19, and about +25 on the template used in these experiments. We show that the strong pause at +7, after the synthesis of 5'-ACUCUCU, leads to repeated cycles of upstream slippage of the RNA-DNA hybrid followed by re-pairing with the DNA and continued RNA synthesis. The resulting transcripts are 2, 4, and 6 bases longer than predicted by the template sequence. Slippage is efficient when transcription is primed with the +1/+2 (ApC) dinucleotide, and it occurs at even higher levels with the +2/+3 primer (CpU). Slippage can occur at high levels with ATP initiation, but priming with CpA (-1/+1) supports very little slippage. This latter result is not simply an effect of transcript length at the point of pausing. Slippage can also occur with a second template on which the polymerase can be paused after synthesizing ACUCU. Slippage is not reduced by an ATP analog that blocks promoter escape, but it is inhibited by substitution of 5Br-U for U in the RNA. Our results reveal an unexpected flexibility of RNA polymerase II ternary complexes during the very early stage of transcription, and they suggest that initiation at different locations within the same promoter gives rise to transcription complexes with different properties.
منابع مشابه
Mechanism of sequence-specific pausing of bacterial RNA polymerase.
Sequence-specific pausing of multisubunit RNA polymerases (RNAPs) represents a rate-limiting step during transcription elongation. Pausing occurs on average every 100 bases of DNA. Several models have been proposed to explain pausing, including backtracking of the ternary elongation complex, delay of translocation of the enzyme along DNA, or a conformational change in the active site preventing...
متن کاملTranscription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences.
Escherichia coli RNA polymerase pauses immediately after transcription of certain sequences that can form stable secondary structures in the nascent RNA transcript; pausing appears to be essential for several types of bacterial transcription attenuation mechanisms. Because base changes that weaken the RNA secondary structures reduce the half-life of pausing by RNA polymerase, nascent transcript...
متن کاملNascent RNA structure modulates the transcriptional dynamics of RNA polymerases.
RNA polymerase pausing represents an important mechanism of transcriptional regulation. In this study, we use a single-molecule transcription assay to investigate the effect of template base-pair composition on pausing by RNA polymerase II and the evolutionarily distinct mitochondrial polymerase Rpo41. For both enzymes, pauses are shorter and less frequent on GC-rich templates. Significantly, i...
متن کاملFolding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures.
RNA folding in the cell occurs during transcription. Expedient RNA folding must avoid the formation of undesirable structures as the nascent RNA emerges from the RNA polymerase. We show that efficient folding during transcription of three conserved noncoding RNAs from Escherichia coli, RNase P RNA, signal-recognition particle RNA, and tmRNA is facilitated by their cognate polymerase pausing at ...
متن کاملMicrosatellite (SSR) amplification by PCR usually led to polymorphic bands: Evidence which shows replication slippage occurs in extend or nascent DNA strands
Microsatellites or simple sequence repeats (SSRs) are very effective molecular markers in population genetics, genome mapping, taxonomic study and other large-scale studies. Variation in number of tandem repeats within microsatellite refers to simple sequence length polymorphism (SSLP); but there are a few studies that are showed SSRs replication slippage may be occurred during in vitro amplifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2002